Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
In this paper, we quantify the asymptotic limit of collective behavior kinetic equations arising in mathematical biology modeled by Vlasov-type equations with nonlocal interaction forces and alignment. More precisely, we investigate the hydrodynamic limit of a kinetic Cucker–Smale flocking model wit...
Главные авторы: | Carrillo, JA, Choi, Y-P, Jung, J |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
World Scientific Publishing
2021
|
Схожие документы
-
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
по: Carrillo de la Plata, JA, и др.
Опубликовано: (2020) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
по: Carrillo, JA, и др.
Опубликовано: (2021) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
по: Bailo, R, и др.
Опубликовано: (2024) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
по: Carrillo de la Plata, JA, и др.
Опубликовано: (2018) -
Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus
по: Carrillo, JA, и др.
Опубликовано: (2019)