Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
In this paper, we quantify the asymptotic limit of collective behavior kinetic equations arising in mathematical biology modeled by Vlasov-type equations with nonlocal interaction forces and alignment. More precisely, we investigate the hydrodynamic limit of a kinetic Cucker–Smale flocking model wit...
Автори: | Carrillo, JA, Choi, Y-P, Jung, J |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
World Scientific Publishing
2021
|
Схожі ресурси
Схожі ресурси
-
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
за авторством: Carrillo de la Plata, JA, та інші
Опубліковано: (2020) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
за авторством: Carrillo, JA, та інші
Опубліковано: (2021) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
за авторством: Bailo, R, та інші
Опубліковано: (2024) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
за авторством: Carrillo de la Plata, JA, та інші
Опубліковано: (2018) -
Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus
за авторством: Carrillo, JA, та інші
Опубліковано: (2019)