Image retrieval outperforms diffusion models on data augmentation
Many approaches have been proposed to use diffusion models to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large datasets, often with noisy annotations, and it remains an open question to which extent these models contrib...
المؤلفون الرئيسيون: | Burg, MF, Wenzel, F, Zietlow, D, Horn, M, Makansi, O, Locatello, F, Russell, C |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2023
|
مواد مشابهة
-
Retrieval-augmented human motion generation with diffusion model
حسب: Guo, Xinying
منشور في: (2023) -
Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model
حسب: Daniel Mederer, وآخرون
منشور في: (2025-01-01) -
Paired cross-modal data augmentation for fine-grained image-to-text retrieval
حسب: Wang, Hao, وآخرون
منشور في: (2023) -
In-Context Retrieval-Augmented Language Models
حسب: Ori Ram, وآخرون
منشور في: (2023-11-01) -
Art, Artfulness, or Artifice?: A Review of The Art of Statistics: How to Learn From Data, by David Spiegelhalter
حسب: Jason Makansi
منشور في: (2020-01-01)