Image retrieval outperforms diffusion models on data augmentation
Many approaches have been proposed to use diffusion models to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large datasets, often with noisy annotations, and it remains an open question to which extent these models contrib...
Автори: | Burg, MF, Wenzel, F, Zietlow, D, Horn, M, Makansi, O, Locatello, F, Russell, C |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Journal of Machine Learning Research
2023
|
Схожі ресурси
-
Retrieval-augmented human motion generation with diffusion model
за авторством: Guo, Xinying
Опубліковано: (2023) -
Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model
за авторством: Daniel Mederer, та інші
Опубліковано: (2025-01-01) -
Paired cross-modal data augmentation for fine-grained image-to-text retrieval
за авторством: Wang, Hao, та інші
Опубліковано: (2023) -
In-Context Retrieval-Augmented Language Models
за авторством: Ori Ram, та інші
Опубліковано: (2023-11-01) -
Art, Artfulness, or Artifice?: A Review of The Art of Statistics: How to Learn From Data, by David Spiegelhalter
за авторством: Jason Makansi
Опубліковано: (2020-01-01)