Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition
Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into i...
Главные авторы: | Xie, Z, Sun, Z, Jin, L, Ni, H, Lyons, T |
---|---|
Формат: | Journal article |
Опубликовано: |
Institute of Electrical and Electronics Engineers
2017
|
Схожие документы
-
Automated Handwritten Text Recognition
по: Ram Kumar R.P., и др.
Опубликовано: (2023-01-01) -
A Pipeline Approach to Context-Aware Handwritten Text Recognition
по: Yee Fan Tan, и др.
Опубликовано: (2022-02-01) -
Online chinese handwritten character recognition : a brief review /
по: 308792 Yong, Haur Tay, и др.
Опубликовано: (2003) -
Improving transformer for scene text and handwritten text recognition
по: Tan, Yew Lee
Опубликовано: (2024) -
Handwriting Enhancement: Recognition-Based and Recognition-Independent Approaches for On-Device Online Handwritten Text Alignment
по: Karina Korovai, и др.
Опубликовано: (2024-01-01)