On the use of Runge-Kutta time-marching and multigrid for the solution of steady adjoint equations
This paper considers the solution of steady adjoint equations using a class of iterative methods which includes preconditioned Runge-Kutta time-marching with multigrid. It is shown that, if formulated correctly, equal numbers of iterations of the direct and adjoint iterative solvers will result in t...
主要作者: | Giles, M |
---|---|
格式: | Report |
出版: |
Unspecified
2000
|
相似書籍
-
Monolithic multigrid for implicit Runge-Kutta discretizations of incompressible fluid flow
由: Abu-Labdeh, R, et al.
出版: (2023) -
Numerical solution of fuzzy differential equation using improved Runge-Kutta method
由: Rabiei, Faranak, et al.
出版: (2014) -
Numerical Solution for Fuzzy Enzyme Kinetic Equations by the Runge–Kutta Method
由: Yousef Barazandeh, et al.
出版: (2018-03-01) -
Runge-kutta method /
由: Nur Fathiah Mohd Sakiam, 1993- 603356, et al.
出版: (2016) -
Impulsive Discrete Runge–Kutta Methods and Impulsive Continuous Runge–Kutta Methods for Nonlinear Differential Equations with Delayed Impulses
由: Gui-Lai Zhang, et al.
出版: (2024-09-01)