Adversarial attacks can deceive AI systems, leading to misclassification or incorrect decisions
This comprehensive analysis thoroughly examines the topic of adversarial attacks in artificial intelligence (AI), providing a detailed overview of the various methods used to compromise machine learning models. It explores different attack techniques, ranging from the simple Fast Gradient Sign Metho...
主要な著者: | Radanliev, P, Santos, O |
---|---|
フォーマット: | Internet publication |
言語: | English |
出版事項: |
2023
|
類似資料
-
MA‐CAT: Misclassification‐Aware Contrastive Adversarial Training
著者:: Hongxin Zhi, 等
出版事項: (2024-05-01) -
Frida Kahlo: Appearances Can Be Deceiving
著者:: Berit Potter
出版事項: (2021-06-01) -
Adversarial Defense on Harmony: Reverse Attack for Robust AI Models Against Adversarial Attacks
著者:: Yebon Kim, 等
出版事項: (2024-01-01) -
Deceived /
著者:: Barrett, Maria
出版事項: (1994) -
The deceiver /
著者:: Forsyth, Frederick, 1938-
出版事項: (1992)