Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings

Current meta-learning approaches focus on learning functional representations of relationships between variables, i.e. estimating conditional expectations in regression. In many applications, however, the conditional distributions cannot be meaningfully summarized solely by expectation (due to e.g....

Volledige beschrijving

Bibliografische gegevens
Hoofdauteurs: Ton, J-F, Chan, L, Teh, YW, Sejdinovic, D
Formaat: Journal article
Taal:English
Gepubliceerd in: Journal of Machine Learning Research 2021