Super-trustscore: reliable failure detection for automated skin lesion diagnosis
The successful deployment of deep neural networks in safetycritical settings, such as medical image analysis, is contingent on their ability to provide reliable uncertainty estimates. In this paper, we propose a new confidence scoring function called Super-TrustScore that improves upon the existing...
Hauptverfasser: | Naushad, J, Voiculescu, ID |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
IEEE
2024
|
Ähnliche Einträge
Ähnliche Einträge
-
AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION
von: Mamun Ahmed, et al.
Veröffentlicht: (2023-12-01) -
Exploring Edge-Based Segmentation Towards Automated Skin Lesion Diagnosis
von: Lau, Hui Keng, et al.
Veröffentlicht: (2018) -
Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis
von: Paul Wighton, et al.
Veröffentlicht: (2011-01-01) -
Automated stroke lesion detection and diagnosis system
von: Mohd Saad, N., et al.
Veröffentlicht: (2017) -
A Reinforcement Learning Algorithm for Automated Detection of Skin Lesions
von: Usman Ahmad Usmani, et al.
Veröffentlicht: (2021-10-01)