Super-trustscore: reliable failure detection for automated skin lesion diagnosis
The successful deployment of deep neural networks in safetycritical settings, such as medical image analysis, is contingent on their ability to provide reliable uncertainty estimates. In this paper, we propose a new confidence scoring function called Super-TrustScore that improves upon the existing...
Главные авторы: | Naushad, J, Voiculescu, ID |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2024
|
Схожие документы
-
Automated Skin Lesion Detection towards Melanoma
по: Maryam Bibi, и др.
Опубликовано: (2019-10-01) -
AI EMPOWERED DIAGNOSIS OF PEMPHIGUS: A MACHINE LEARNING APPROACH FOR AUTOMATED SKIN LESION DETECTION
по: Mamun Ahmed, и др.
Опубликовано: (2023-12-01) -
Exploring Edge-Based Segmentation Towards Automated Skin Lesion Diagnosis
по: Lau, Hui Keng, и др.
Опубликовано: (2018) -
Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis
по: Paul Wighton, и др.
Опубликовано: (2011-01-01) -
Automated stroke lesion detection and diagnosis system
по: Mohd Saad, N., и др.
Опубликовано: (2017)