Robustness guarantees for deep neural networks on videos
The widespread adoption of deep learning models places demands on their robustness. In this paper, we consider the robustness of deep neural networks on videos, which comprise both the spatial features of individual frames extracted by a convolutional neural network and the temporal dynamics between...
Hoofdauteurs: | Kwiatkowska, M, Wu, M |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
IEEE
2020
|
Gelijkaardige items
-
Global robustness evaluation of deep neural networks with provable guarantees for the Hamming distance
door: Ruan, W, et al.
Gepubliceerd in: (2019) -
Statistical guarantees for the robustness of Bayesian neural networks
door: Cardelli, L, et al.
Gepubliceerd in: (2019) -
Robustness evaluation of deep neural networks with provable guarantees
door: Wu, M
Gepubliceerd in: (2020) -
Safety verification for deep neural networks with provable guarantees
door: Kwiatkowska, M
Gepubliceerd in: (2019) -
Safety and robustness for deep learning with provable guarantees (keynote)
door: Kwiatkowska, M
Gepubliceerd in: (2019)