Pseudo-marginal Hamiltonian Monte Carlo
Bayesian inference in the presence of an intractable likelihood function is computationally challenging. When following a Markov chain Monte Carlo (MCMC) approach to approximate the posterior distribution in this context, one typically either uses MCMC schemes which target the joint posterior of the...
Główni autorzy: | Alenlov, J, Doucet, A, Lindsten, F |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Journal of Machine Learning Research
2021
|
Podobne zapisy
-
Nonparametric Hamiltonian Monte Carlo
od: Mak, C, i wsp.
Wydane: (2021) -
Interacting particle Markov chain Monte Carlo
od: Doucet, A, i wsp.
Wydane: (2016) -
Quantum dynamical Hamiltonian Monte Carlo
od: Owen Lockwood, i wsp.
Wydane: (2024-08-01) -
Shadow Magnetic Hamiltonian Monte Carlo
od: Wilson Tsakane Mongwe, i wsp.
Wydane: (2022-01-01) -
Adaptive Magnetic Hamiltonian Monte Carlo
od: Wilson Tsakane Mongwe, i wsp.
Wydane: (2021-01-01)