Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these c...
Автори: | Drinkall, F, Zohren, S, Pierrehumbert, JB |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Association for Computational Linguistics
2022
|
Схожі ресурси
Схожі ресурси
-
Predicting COVID-19 cases using Reddit posts and other online resources
за авторством: Drinkall, F, та інші
Опубліковано: (2021) -
Time machine GPT
за авторством: Drinkall, F, та інші
Опубліковано: (2024) -
Regional forecasting of COVID-19 caseload by non-parametric regression: a VAR epidemiological model
за авторством: Aaron C Shang, та інші
Опубліковано: (2021-02-01) -
Unsupervised detection of contextualized embedding bias with application to ideology
за авторством: Hofmann, V, та інші
Опубліковано: (2022) -
Asymptomatic Cases, the Hidden Challenge in Predicting COVID-19 Caseload Increases
за авторством: Brett Snider, та інші
Опубліковано: (2021-04-01)