Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
第一著者: | Konis, K |
---|---|
その他の著者: | Ripley, B |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2007
|
主題: |
類似資料
-
On auxiliary variables and many-core architectures in computational statistics
著者:: Lee, A
出版事項: (2011) -
Markov fields and log-linear interaction models for contingency tables
著者:: Darroch, J, 等
出版事項: (1980) -
Reweighting methods in high dimensional regression
著者:: Fang, Z
出版事項: (2012) -
Synonymous codon usage influences the local protein structure observed
著者:: Saunders, R, 等
出版事項: (2010) -
Models and software for improving the profitability of pharmaceutical research
著者:: Qu, S
出版事項: (2011)