Linear programming algorithms for detecting separated data in binary logistic regression models
This thesis is a study of the detection of separation among the sample points in binary logistic regression models. We propose a new algorithm for detecting separation and demonstrate empirically that it can be computed fast enough to be used routinely as part of the fitting process for logistic reg...
Hoofdauteur: | Konis, K |
---|---|
Andere auteurs: | Ripley, B |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2007
|
Onderwerpen: |
Gelijkaardige items
-
On auxiliary variables and many-core architectures in computational statistics
door: Lee, A
Gepubliceerd in: (2011) -
Markov fields and log-linear interaction models for contingency tables
door: Darroch, J, et al.
Gepubliceerd in: (1980) -
Reweighting methods in high dimensional regression
door: Fang, Z
Gepubliceerd in: (2012) -
Synonymous codon usage influences the local protein structure observed
door: Saunders, R, et al.
Gepubliceerd in: (2010) -
Models and software for improving the profitability of pharmaceutical research
door: Qu, S
Gepubliceerd in: (2011)