Nonlocal approximation of nonlinear diffusion equations
We show that degenerate nonlinear diffusion equations can be asymptotically obtained as a limit from a class of nonlocal partial differential equations. The nonlocal equations are obtained as gradient flows of interaction-like energies approximating the internal energy. We construct weak solutions a...
Hlavní autoři: | Carrillo, JA, Esposito, A, Wu, JS-H |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer Nature
2024
|
Podobné jednotky
-
Nonlocal approximation of nonlinear diffusion equations
Autor: Carrillo, JA, a další
Vydáno: (2024) -
Phase transitions for nonlinear nonlocal aggregation-diffusion equations
Autor: Carrillo, JA, a další
Vydáno: (2021) -
On Nonlinear Nonlocal Systems of Reaction Diffusion Equations
Autor: B. Ahmad, a další
Vydáno: (2014-01-01) -
A finite volume approximations for one nonlinear and nonlocal integrodifferential equations
Autor: Jaouad El Kasmy, a další
Vydáno: (2024-12-01) -
A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
Autor: Cesar A. Gómez, a další
Vydáno: (2020-01-01)