Progressive skeletonization: trimming more fat from a network at initialization

Recent studies have shown that skeletonization (pruning parameters) of networks at initialization provides all the practical benefits of sparsity both at inference and training time, while only marginally degrading their performance. However, we observe that beyond a certain level of sparsity (appro...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: de Jorge, P, Sanyal, A, Behl, HS, Torr, PHS, Rogez, G, Dokania, PK
Định dạng: Conference item
Ngôn ngữ:English
Được phát hành: OpenReview 2020