Optimising convolutional neural networks for large-scale neuroimaging studies
<p>Ageing has a pronounced effect on the human brain, leading to cognitive decline and an increased risk of neurodegenerative diseases. Thus, the ageing population presents a significant challenge for healthcare. The use of MRI and the availability of computational methods for analysing the M...
Auteur principal: | Dinsdale, NK |
---|---|
Autres auteurs: | Namburete, AI |
Format: | Thèse |
Langue: | English |
Publié: |
2021
|
Sujets: |
Documents similaires
-
Automated detection of anterior cruciate ligament tears using a deep convolutional neural network
par: Yusuke Minamoto, et autres
Publié: (2022-06-01) -
Optimising network modelling methods for fMRI
par: Pervaiz, U
Publié: (2021) -
Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks
par: Zhanhao Mo, et autres
Publié: (2024-11-01) -
Automatic Assessment of ASPECTS Using Diffusion-Weighted Imaging in Acute Ischemic Stroke Using Recurrent Residual Convolutional Neural Network
par: Luu-Ngoc Do, et autres
Publié: (2020-10-01) -
Brain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey
par: Andronicus A. Akinyelu, et autres
Publié: (2022-07-01)