The Ratios Conjecture and upper bounds for negative moments of L-functions over function fields

We prove special cases of the Ratios Conjecture for the family of quadratic Dirichlet L–functions over function fields. More specifically, we study the average of L(1/2 + α, χD)/L(1/2 + β, χD), when D varies over monic, square-free polynomials of degree 2g + 1 over Fq[x], as g → ∞, and we obtain an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bui, HM, Florea, A, Keating, J
Μορφή: Journal article
Γλώσσα:English
Έκδοση: American Mathematical Society 2023