The PI index of phenylenes
The Padmakar–Ivan (PI) index is a graph invariant defined as the summation of the sums of n eu (e|G) and n ev (e|G) over all the edges e = uv of a connected graph G, i.e., PI(G) = ∑ e∈E(G)[n eu (e|G) + n ev (e|G)], where n eu (e|G) is the number of edges of G lying closer to u than to v and n ev (e|...
Hauptverfasser: | Deng, H, Chen, S, Zhang, J |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer Netherlands
2006
|
Ähnliche Einträge
Ähnliche Einträge
-
Third order Randić index of phenylenes
von: Zhang, J, et al.
Veröffentlicht: (2006) -
Second order Randić index of phenylenes and their corresponding hexagonal squeezes
von: Zhang, J, et al.
Veröffentlicht: (2006) -
Merrifield-Simmons Index in Random Phenylene Chains and Random Hexagon Chains
von: Ailian Chen
Veröffentlicht: (2015-01-01) -
Triptycene Diols: A Strategy for Synthesizing Planar pi Systems through Catalytic Conversion of a Poly(p-phenylene ethynylene) into a Poly(p-phenylene vinylene)
von: Swager, Timothy Manning, et al.
Veröffentlicht: (2012) -
Molecular orbital models of poly(p-phenylene)
von: Daly, H, et al.
Veröffentlicht: (1999)