TEDS-Net: enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations
Accurate topology is key when performing meaningful anatomical segmentations, however, it is often overlooked in traditional deep learning methods. In this work we propose TEDS-Net: a novel segmentation method that guarantees accurate topology. Our method is built upon a continuous diffeomorphic fra...
Hauptverfasser: | Wyburd, MK, Jenkinson, M, Dinsdale, NK, Namburete, AIL |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
Springer
2021
|
Ähnliche Einträge
-
Anatomically plausible segmentations: explicitly preserving topology through prior deformations
von: Wyburd, MK, et al.
Veröffentlicht: (2024) -
Cortical plate segmentation using CNNs in 3D fetal ultrasound
von: Wyburd, MK, et al.
Veröffentlicht: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
von: Dinsdale, NK, et al.
Veröffentlicht: (2020) -
STAMP: Simultaneous Training and Model Pruning for low data regimes in medical image segmentation
von: Dinsdale, NK, et al.
Veröffentlicht: (2022) -
Preserving known anatomical topology in medical image segmentation using deep learning
von: Wyburd, MK
Veröffentlicht: (2022)