Problems in extremal and probabilistic combinatorics: cubes, squares and permutations
<p>We begin by studying the possible intersection sizes of a $k$-dimensional linear subspace with the hypercube $\{0,1\}^n$. For a fixed $k$, the largest intersection size is $2^k$ and it was shown by Melo and Winter that the second largest intersection size is $2^{k-1} + 2^{k-2}$. We show tha...
Главный автор: | Johnston, T |
---|---|
Другие авторы: | Scott, A |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2021
|
Предметы: |
Схожие документы
-
A code for square permutations and convex permutominoes
по: Enrica Duchi
Опубликовано: (2019-12-01) -
Combinatorics of diagrams of permutations
по: Joel Brewster Lewis, и др.
Опубликовано: (2014-01-01) -
Absorptions in combinatorics
по: Cheng, Y
Опубликовано: (2024) -
Consecutive patterns in restricted permutations and involutions
по: M. Barnabei, и др.
Опубликовано: (2019-06-01) -
Associated Permutations of Complete Non-Ambiguous Trees
по: Daniel Chen, и др.
Опубликовано: (2024-04-01)