Large scale tensor regression using kernels and variational inference
We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology Kernel Fried Tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...
Главные авторы: | Hu, R, Nicholls, GK, Sejdinovic, D |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Nature
2021
|
Схожие документы
-
Large-scale kernel methods for independence testing
по: Zhang, Q, и др.
Опубликовано: (2017) -
Large scale methods for kernels, causal inference and survival modelling
по: Hu, R
Опубликовано: (2022) -
Causal inference via Kernel deviance measures
по: Mitrovic, J, и др.
Опубликовано: (2018) -
Optimal kernel choice for large-scale two-sample tests
по: Gretton, A, и др.
Опубликовано: (2012) -
DR-ABC: Approximate Bayesian computation with kernel-based distribution regression
по: Mitrovic, J, и др.
Опубликовано: (2016)