DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
主要な著者: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
フォーマット: | Journal article |
出版事項: |
Springer
2020
|
類似資料
-
A semi-supervised deep generative model for human body analysis
著者:: De Bem, R, 等
出版事項: (2019) -
A conditional deep generative model of people in natural images
著者:: De Bem, R, 等
出版事項: (2019) -
3D hand shape and pose from images in the wild
著者:: Boukhayma, A, 等
出版事項: (2020) -
Cross-modal deep face normals with deactivable skip connections
著者:: Abrevaya, VF, 等
出版事項: (2020) -
Variational mixture-of-experts autoencoders for multi-modal deep generative models
著者:: Shi, Y, 等
出版事項: (2019)