DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
Hoofdauteurs: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
Formaat: | Journal article |
Gepubliceerd in: |
Springer
2020
|
Gelijkaardige items
-
A semi-supervised deep generative model for human body analysis
door: De Bem, R, et al.
Gepubliceerd in: (2019) -
A conditional deep generative model of people in natural images
door: De Bem, R, et al.
Gepubliceerd in: (2019) -
3D hand shape and pose from images in the wild
door: Boukhayma, A, et al.
Gepubliceerd in: (2020) -
Cross-modal deep face normals with deactivable skip connections
door: Abrevaya, VF, et al.
Gepubliceerd in: (2020) -
Variational mixture-of-experts autoencoders for multi-modal deep generative models
door: Shi, Y, et al.
Gepubliceerd in: (2019)