DGPose: Deep Generative Models for Human Body Analysis
Deep generative modelling for human body analysis is an emerging problem with many interesting applications. However, the latent space learned by such approaches is typically not interpretable, resulting in less flexibility. In this work, we present deep generative models for human body analysis in...
Главные авторы: | de Bem, R, Ghosh, A, Ajanthan, T, Miksik, O, Boukhayma, A, Siddharth, N, Torr, P |
---|---|
Формат: | Journal article |
Опубликовано: |
Springer
2020
|
Схожие документы
-
A semi-supervised deep generative model for human body analysis
по: De Bem, R, и др.
Опубликовано: (2019) -
A conditional deep generative model of people in natural images
по: De Bem, R, и др.
Опубликовано: (2019) -
3D hand shape and pose from images in the wild
по: Boukhayma, A, и др.
Опубликовано: (2020) -
Cross-modal deep face normals with deactivable skip connections
по: Abrevaya, VF, и др.
Опубликовано: (2020) -
Variational mixture-of-experts autoencoders for multi-modal deep generative models
по: Shi, Y, и др.
Опубликовано: (2019)