Expander graph propagation
Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks is known to be challenging: it often requires computing node features that are mindful of both local interactions in their neighbourhood and the global context of the graph structure. GNN architectures that navi...
Autori principali: | Deac, A, Lackenby, M, Veličković, P |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Journal of Machine Learning Research
2022
|
Documenti analoghi
-
Expanders, rank and graphs of groups
di: Lackenby, M
Pubblicazione: (2004) -
How does over-squashing affect the power of GNNs?
di: Di Giovanni, F, et al.
Pubblicazione: (2024) -
Expander graphs
di: Kahale, Nabil
Pubblicazione: (2005) -
Parameterized counting and Cayley graph expanders
di: Peyerimhoff, N, et al.
Pubblicazione: (2023) -
Models for information propagation on graphs
di: Oliver R. A. Dunbar, et al.