Line-of-sight percolation
Given $\omega\ge 1$, let $Z^2_{(\omega)}$ be the graph with vertex set $Z^2$ in which two vertices are joined if they agree in one coordinate and differ by at most $\omega$ in the other. (Thus $Z^2_{(1)}$ is precisely $Z^2$.) Let $p_c(\omega)$ be the critical probability for site percolation in $Z^2...
Váldodahkkit: | Bollobas, B, Janson, S, Riordan, O |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
2007
|
Geahča maid
-
Spread-out percolation in R^d
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2005) -
Percolation.
Dahkki: Bollobás, B, et al.
Almmustuhtton: (2006) -
Clique percolation
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2008) -
Sharp thresholds and percolation in the plane
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2004) -
Percolation on self-dual polygon configurations
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2010)