Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data.
Mixture models are often used in the statistical segmentation of medical images. For example, they can be used for the segmentation of structural images into different matter types or of functional statistical parametric maps (SPMs) into activations and nonactivations. Nonspatial mixture models segm...
主要な著者: | Woolrich, M, Behrens, T, Beckmann, C, Smith, S |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2005
|
類似資料
-
Variational Bayes inference of spatial mixture models for segmentation.
著者:: Woolrich, M, 等
出版事項: (2006) -
Multilevel linear modelling for FMRI group analysis using Bayesian inference.
著者:: Woolrich, M, 等
出版事項: (2004) -
Statistical analysis of fMRI data
著者:: Woolrich, M, 等
出版事項: (2009) -
Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.
著者:: Makni, S, 等
出版事項: (2008) -
Bayesian deconvolution of fMRI data using bilinear dynamical systems (vol 42, pg 1381, 2008)
著者:: Makni, S, 等
出版事項: (2009)