Scalable gaussian processes for characterizing multidimensional change surfaces
We present a scalable Gaussian process model for identifying and characterizing smooth multidimensional changepoints, and automatically learning changes in expressive covariance structure. We use Random Kitchen Sink features to exibly define a change surface in combination with expressive spectral m...
Main Authors: | Herlands, W, Wilson, A, Nickisch, H, Flaxman, S, Neill, D, van Panhuis, W, Xing, E |
---|---|
פורמט: | Conference item |
יצא לאור: |
Journal of Machine Learning Research
2016
|
פריטים דומים
-
Scalable inference and private co-training for Gaussian processes
מאת: Thomas, O
יצא לאור: (2017) -
Modulating scalable Gaussian processes for expressive statistical learning
מאת: Liu, Haitao, et al.
יצא לאור: (2022) -
A Scalable Gaussian Process Approach to Shear Mapping with MuyGPs
מאת: Gregory Sallaberry, et al.
יצא לאור: (2025-01-01) -
Understanding and comparing scalable Gaussian process regression for big data
מאת: Liu, Haitao, et al.
יצא לאור: (2020) -
Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process
מאת: Qiang Chang, et al.
יצא לאור: (2016-03-01)