Scalable gaussian processes for characterizing multidimensional change surfaces
We present a scalable Gaussian process model for identifying and characterizing smooth multidimensional changepoints, and automatically learning changes in expressive covariance structure. We use Random Kitchen Sink features to exibly define a change surface in combination with expressive spectral m...
Huvudupphovsmän: | , , , , , , |
---|---|
Materialtyp: | Conference item |
Publicerad: |
Journal of Machine Learning Research
2016
|