Defective colouring of hypergraphs
We prove that the vertices of every (r + 1)-uniform hypergraph with maximum degree ∆ may be coloured with c( ∆ d+1 ) 1/r colours such that each vertex is in at most d monochromatic edges. This result, which is best possible up to the value of the constant c, generalises the classical result of Erdos...
Päätekijät: | Girão, A, Illingworth, F, Scott, AD, Wood, DR |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Wiley
2023
|
Samankaltaisia teoksia
-
Inapproximability of counting hypergraph colourings
Tekijä: Galanis, A, et al.
Julkaistu: (2022) -
Linearly ordered colourings of hypergraphs
Tekijä: Nakajima, T-V, et al.
Julkaistu: (2022) -
Linearly ordered colourings of hypergraphs
Tekijä: Nakajima, T-V, et al.
Julkaistu: (2022) -
Constrained Colouring and σ-Hypergraphs
Tekijä: Caro Yair, et al.
Julkaistu: (2015-02-01) -
New strong colouring of hypergraphs
Tekijä: Sandro Rajola, et al.
Julkaistu: (2011-06-01)