Distributed Maximum Likelihood for Simultaneous Self-Localization and Tracking in Sensor Networks
We show that the sensor self-localization problem can be cast as a static parameter estimation problem for Hidden Markov Models and we implement fully decentralized versions of the Recursive Maximum Likelihood and on-line Expectation-Maximization algorithms to localize the sensor network simultaneou...
主要な著者: | Kantas, N, Singh, S, Doucet, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2012
|
類似資料
-
A distributed recursive maximum likelihood implementation for sensor registration
著者:: Kantas, N, 等
出版事項: (2006) -
Distributed Online self-localization and tracking in sensor networks
著者:: Kantas, N, 等
出版事項: (2007) -
Distributed self localisation of sensor networks using particle methods
著者:: Kantas, N, 等
出版事項: (2006) -
Gradient-free maximum likelihood parameter estimation with particle filters
著者:: Poyiadjis, G, 等
出版事項: (2006) -
A Distance-Based Maximum Likelihood Estimation Method for Sensor Localization in Wireless Sensor Networks
著者:: Jing Xu, 等
出版事項: (2016-04-01)