PROPAGATION AND STABILITY OF WAVELIKE SOLUTIONS OF FINITE-DIFFERENCE EQUATIONS WITH VARIABLE-COEFFICIENTS
An asymptotic approach is used to analyze the propagation and dissipation of wavelike solutions to finite difference equations. It is shown that to first order the amplitude of a wave is convected at the local group velocity and varies in magnitude if the coefficients of the finite difference equati...
Главные авторы: | Giles, M, Thompkins, W |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
1985
|
Схожие документы
-
Asymptotic analysis of numerical wave propagation in finite difference equations
по: Giles, M. (Michael), и др.
Опубликовано: (2016) -
How enhancers regulate wavelike gene expression patterns
по: Christine Mau, и др.
Опубликовано: (2023-07-01) -
Molecular Dynamics Simulation of Wetting on Wavelike Nanorough Surfaces
по: Claudiu Valentin Suciu, и др.
Опубликовано: (2011-01-01) -
Wavelike statistics from pilot-wave dynamics in a circular corral
по: Moukhtar, Julien, и др.
Опубликовано: (2013) -
Towards an Understanding of Control of Complex Rhythmical “Wavelike” Coordination in Humans
по: Ross Howard Sanders, и др.
Опубликовано: (2020-04-01)