Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
主要な著者: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2001
|
類似資料
-
Robust Full Bayesian Learning for Radial Basis Networks
著者:: Andrieu, C, 等
出版事項: (2001) -
Robust full Bayesian methods for neural networks
著者:: Andrieu, C, 等
出版事項: (2000) -
Sequential MCMC for Bayesian model selection
著者:: Andrieu, C, 等
出版事項: (1999) -
Bayesian radial basis functions of variable dimension
著者:: Holmes, C, 等
出版事項: (1998) -
Robust neural network predictors using radial basis functions
著者:: Siti Hajar Salleh,
出版事項: (1998)