Robust full Bayesian learning for radial basis networks.
We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...
Asıl Yazarlar: | Andrieu, C, de Freitas, N, Doucet, A |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2001
|
Benzer Materyaller
-
Robust Full Bayesian Learning for Radial Basis Networks
Yazar:: Andrieu, C, ve diğerleri
Baskı/Yayın Bilgisi: (2001) -
Robust full Bayesian methods for neural networks
Yazar:: Andrieu, C, ve diğerleri
Baskı/Yayın Bilgisi: (2000) -
Sequential MCMC for Bayesian model selection
Yazar:: Andrieu, C, ve diğerleri
Baskı/Yayın Bilgisi: (1999) -
Bayesian radial basis functions of variable dimension
Yazar:: Holmes, C, ve diğerleri
Baskı/Yayın Bilgisi: (1998) -
Robust neural network predictors using radial basis functions
Yazar:: Siti Hajar Salleh,
Baskı/Yayın Bilgisi: (1998)