Robust full Bayesian learning for radial basis networks.

We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...

詳細記述

書誌詳細
主要な著者: Andrieu, C, de Freitas, N, Doucet, A
フォーマット: Journal article
言語:English
出版事項: 2001