Robust full Bayesian learning for radial basis networks.

We propose a hierarchical full Bayesian model for radial basis networks. This model treats the model dimension (number of neurons), model parameters, regularization parameters, and noise parameters as unknown random variables. We develop a reversible-jump Markov chain Monte Carlo (MCMC) method to pe...

全面介绍

书目详细资料
Main Authors: Andrieu, C, de Freitas, N, Doucet, A
格式: Journal article
语言:English
出版: 2001