Ink removal from histopathology whole slide images by combining classification, detection and image generation models
Histopathology slides are routinely marked by pathologists using permanent ink markers that should not be removed as they form part of the medical record. Often tumour regions are marked up for the purpose of highlighting features or other downstream processing such an gene sequencing. Once digitise...
Päätekijät: | Ali, S, Alham, N, Verrill, C, Rittscher, J |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
IEEE
2019
|
Samankaltaisia teoksia
-
Improving whole slide segmentation through visual context: a systematic study
Tekijä: Sirinukunwattana, K, et al.
Julkaistu: (2018) -
Artificial intelligence-based quality assessment of histopathology whole-slide images within a clinical workflow: assessment of 'pathprofiler' in a diagnostic pathology setting
Tekijä: Browning, L, et al.
Julkaistu: (2024) -
Transfer Learning Approach for Classification of Histopathology Whole Slide Images
Tekijä: Shakil Ahmed, et al.
Julkaistu: (2021-08-01) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
Tekijä: Jian Ren, et al.
Julkaistu: (2019-05-01) -
Artificial Intelligence-Based Quality Assessment of Histopathology Whole-Slide Images within a Clinical Workflow: Assessment of ‘PathProfiler’ in a Diagnostic Pathology Setting
Tekijä: Lisa Browning, et al.
Julkaistu: (2024-05-01)