A kernel test for causal association via noise contrastive backdoor adjustment
Causal inference grows increasingly complex as the dimension of confounders increases. Given treatments X𝑋, outcomes Y𝑌, and measured confounders Z𝑍, we develop a non-parametric method to test the do-null hypothesis that, after an intervention on X𝑋, there is no marginal dependence of Y𝑌 on X𝑋, agai...
Egile Nagusiak: | Hu, R, Sejdinovic, D, Evans, RJ |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Journal of Machine Learning Research
2024
|
Antzeko izenburuak
-
Differentiable causal backdoor discovery
nork: Gultchin, L, et al.
Argitaratua: (2020) -
Causal inference via Kernel deviance measures
nork: Mitrovic, J, et al.
Argitaratua: (2018) -
Noise contrastive meta-learning for conditional density estimation using kernel mean embeddings
nork: Ton, J-F, et al.
Argitaratua: (2021) -
Use Procedural Noise to Achieve Backdoor Attack
nork: Xuan Chen, et al.
Argitaratua: (2021-01-01) -
Selection, ignorability and challenges with causal fairness
nork: Fawkes, J, et al.
Argitaratua: (2022)