On the correspondence between monotonic max-sum GNNs and datalog
Although there has been significant interest in applying machine learning techniques to structured data, the expressivity (i.e., a description of what can be learned) of such techniques is still poorly understood. In this paper, we study data transformations based on graph neural networks (GNNs). Fi...
Auteurs principaux: | Tena Cucala, D, Cuenca Grau, B, Motik, B, Kostylev, EV |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Association for Computing Machinery
2023
|
Documents similaires
-
On the correspondence between monotonic max-sum GNNs and Datalog
par: Tena Cucala, D, et autres
Publié: (2023) -
Bridging max graph neural networks and datalog with negation
par: Tena Cucala, D, et autres
Publié: (2024) -
DatalogMTL with negation under stable models semantics
par: Wałęga, PA, et autres
Publié: (2021) -
Stratified negation in datalog with metric temporal operators
par: Tena Cucala, D, et autres
Publié: (2021) -
The stable model semantics of datalog with metric temporal operators
par: Walega, P, et autres
Publié: (2023)