On the correspondence between monotonic max-sum GNNs and datalog
Although there has been significant interest in applying machine learning techniques to structured data, the expressivity (i.e., a description of what can be learned) of such techniques is still poorly understood. In this paper, we study data transformations based on graph neural networks (GNNs). Fi...
Egile Nagusiak: | Tena Cucala, D, Cuenca Grau, B, Motik, B, Kostylev, EV |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
Association for Computing Machinery
2023
|
Antzeko izenburuak
-
On the correspondence between monotonic max-sum GNNs and Datalog
nork: Tena Cucala, D, et al.
Argitaratua: (2023) -
Bridging max graph neural networks and datalog with negation
nork: Tena Cucala, D, et al.
Argitaratua: (2024) -
DatalogMTL with negation under stable models semantics
nork: Wałęga, PA, et al.
Argitaratua: (2021) -
Stratified negation in datalog with metric temporal operators
nork: Tena Cucala, D, et al.
Argitaratua: (2021) -
The stable model semantics of datalog with metric temporal operators
nork: Walega, P, et al.
Argitaratua: (2023)