Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Hoofdauteurs: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
American Physical Society
2020
|
Gelijkaardige items
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
door: Stefano Sarao Mannelli, et al.
Gepubliceerd in: (2020-03-01) -
Thresholds of descending algorithms in inference problems
door: Sarao Mannelli, S, et al.
Gepubliceerd in: (2020) -
The Noisy and Marvelous Molecular World of Biology
door: Felix Ritort
Gepubliceerd in: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
door: Lucas Clarté, et al.
Gepubliceerd in: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
door: Fabrizio Antenucci, et al.
Gepubliceerd in: (2019-01-01)