Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Главные авторы: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
American Physical Society
2020
|
Схожие документы
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
по: Stefano Sarao Mannelli, и др.
Опубликовано: (2020-03-01) -
Thresholds of descending algorithms in inference problems
по: Sarao Mannelli, S, и др.
Опубликовано: (2020) -
The Noisy and Marvelous Molecular World of Biology
по: Felix Ritort
Опубликовано: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
по: Lucas Clarté, и др.
Опубликовано: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
по: Fabrizio Antenucci, и др.
Опубликовано: (2019-01-01)