Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Asıl Yazarlar: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
American Physical Society
2020
|
Benzer Materyaller
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
Yazar:: Stefano Sarao Mannelli, ve diğerleri
Baskı/Yayın Bilgisi: (2020-03-01) -
Thresholds of descending algorithms in inference problems
Yazar:: Sarao Mannelli, S, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
The Noisy and Marvelous Molecular World of Biology
Yazar:: Felix Ritort
Baskı/Yayın Bilgisi: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
Yazar:: Lucas Clarté, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
Yazar:: Fabrizio Antenucci, ve diğerleri
Baskı/Yayın Bilgisi: (2019-01-01)