Marvels and pitfalls of the Langevin algorithm in noisy high-dimensional inference
Gradient-descent-based algorithms and their stochastic versions have widespread applications in machine learning and statistical inference. In this work, we carry out an analytic study of the performance of the algorithm most commonly considered in physics, the Langevin algorithm, in the context of...
Những tác giả chính: | Sarao Mannelli, S, Biroli, G, Cammarota, C, Krzakala, F, Urbani, P, Zdeborová, L |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
American Physical Society
2020
|
Những quyển sách tương tự
-
Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference
Bằng: Stefano Sarao Mannelli, et al.
Được phát hành: (2020-03-01) -
Thresholds of descending algorithms in inference problems
Bằng: Sarao Mannelli, S, et al.
Được phát hành: (2020) -
The Noisy and Marvelous Molecular World of Biology
Bằng: Felix Ritort
Được phát hành: (2019-04-01) -
Theoretical characterization of uncertainty in high-dimensional linear classification
Bằng: Lucas Clarté, et al.
Được phát hành: (2023-01-01) -
Glassy Nature of the Hard Phase in Inference Problems
Bằng: Fabrizio Antenucci, et al.
Được phát hành: (2019-01-01)