Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa

Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: Baker, A, Webster, S, Diepold, A, Kuchma, S, Bordeleau, E, Armitage, J, O'Toole, G
Format: Journal article
Sprog:English
Udgivet: American Society for Microbiology 2019
Beskrivelse
Summary:Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here we show that while c-di-GMP can influence stator localization, stators can in turn impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production in conditions not permissive to motility. This regulation implies a positive feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help define the bidirectional interactions between c-di-GMP and the flagellar machinery.