Real-time trajectory adaptation for quadrupedal locomotion using deep reinforcement learning
We present a control architecture for real-time adaptation and tracking of trajectories generated using a terrain-aware trajectory optimization solver. This approach enables us to circumvent the computationally exhaustive task of online trajectory optimization, and further introduces a control solut...
Principais autores: | , , , , |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2021
|