Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas o...
1. autor: | Hausel, T |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
2006
|
Podobne zapisy
-
Graded Betti numbers of ideals with linear quotient
od: Leila Sharifan, i wsp.
Wydane: (2008-11-01) -
PARTIAL DESINGULARIZATIONS OF QUOTIENTS OF NONSINGULAR VARIETIES AND THEIR BETTI NUMBERS
od: Kirwan, F
Wydane: (1985) -
On localization and Riemann-Roch numbers for symplectic quotients
od: Jeffrey, L, i wsp.
Wydane: (1996) -
On the group of zero-cycles of holomorphic symplectic varieties
od: Alina Marian, i wsp.
Wydane: (2020-03-01) -
Topological invariants of symplectic quotients
od: Metzler, David S. (David Scott)
Wydane: (2008)