Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas o...
Huvudupphovsman: | Hausel, T |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
2006
|
Liknande verk
Liknande verk
-
Graded Betti numbers of ideals with linear quotient
av: Leila Sharifan, et al.
Publicerad: (2008-11-01) -
PARTIAL DESINGULARIZATIONS OF QUOTIENTS OF NONSINGULAR VARIETIES AND THEIR BETTI NUMBERS
av: Kirwan, F
Publicerad: (1985) -
On localization and Riemann-Roch numbers for symplectic quotients
av: Jeffrey, L, et al.
Publicerad: (1996) -
On the group of zero-cycles of holomorphic symplectic varieties
av: Alina Marian, et al.
Publicerad: (2020-03-01) -
Topological invariants of symplectic quotients
av: Metzler, David S. (David Scott)
Publicerad: (2008)